New Possibilities for Hydrogen Transport

G. Wolf, P. Kausch, S. Grothues, S. Neuenfeld, T. M. Klapötke

Properties of Borazane, H₃BNH₃

Property	Borazane, H ₃ BNH ₃	Ammonia, NH ₃	Potential Problems
Hydrogen content (%)	19,5; The Hydrogen-storage density is higher than that of liquid hyrogen ^[1] ; more hydrogen-dense than liquid hydrogen ^[2]	17.7	 (1) NH₃ has a high Hydrogen storage capacity, but also a high decomposition temperature ^[3] (2) NH₃ is very toxic^[3]
Boiling point (°C)	-	-33.34	
Melting point (°C)	97.61 (beginning dec. at 68°C) ^[1] 104°C ^[2] , 110 – 112 ^[4]	-77.73	
Physical state at RT	White solid ^[1] , colorless crystals ^[2]	Colorless gas	
Density at RT (g cm ⁻³)	780 mg mL ^{-1[2]}	0.6819 g/cm ³ at -33.3°C (I); 0.73 g/cm ³ at 1.013 bar at 15°C ^[2]	
Toxicity/Hazard symbols	Flam.Sol 1 (100%), Acute Tox. (50%), Skin Irrit. 2 (50%), Eye Irrit. 2 (50%), Acute Tox. 4 (50%) ECHA	LD ₅₀ = 0.015 mL/kg (lethal dose); LC ₅₀ = 5000 ppm (5 mins., lethal conc.); NIOSH PEL = 50 ppm, REL = 25 ppm, IDLH = 300 ppm	
Release of hyrogen (H ₂) at (°C)	80 - 150 ^[1]	600 ^[3]	

[1] Wikipedia: https://de.wikipedia.org/wiki/Ammiboran, accessed on 12.01.2023. [2] Wikipedia: https://en.wikipedia.org/wiki/Ammonia_borane, accessed on 12.01.2023. [3] *Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen*, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 3. [4] *Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen*, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 3. [4]

Hydrogen (H₂) Transport by Ship: Energy density by weight vs. Energy density by volume

SPECIAL REPORT | Why shipping pure hydrogen around the world might already be dead in the water

Physics and cost mean that ammonia is a far more economic option for long-distance seaborne transportation, writes Leigh Collins

"Hydrogen transport by ship is technically possible for larger distances where pipelines are not an option. Because of its low energy density by volume, gaseous hydrogen is best converted into a more energy-dense liquid before being loaded onto a ship," says Irena's recent report, *Geopolitics of the Energy Transformation: The Hydrogen Factor*. "There are several vectors for hydrogen transport via ship, but ammonia is the most promising."

At normal atmospheric pressure, hydrogen contains just 3kWh of energy per cubic metre, so it either has to be compressed or liquefied to increase its energy density — to 1,411kWh/m³ (at a pressure of 700 bar), or 2,350kWh/m³ when super-cooled to a liquid at a balmy minus 253°C.

The volumetric energy density of ammonia is 59% higher — at 3,730kWh/m³ when stored in its standard liquid form at minus 33.3°C.

So, assuming same-sized vessels, it would theoretically take more than three shipments of liquid hydrogen (LH₂) to transport the same amount of energy as two shipments of liquid ammonia (LNH₃).

The Suiso Frontier vessel, which is taking the world's first shipment of liquid hydrogen from southern Australia to Japan. Photo: Kawasaki Heavy Industries

In transport in tanks (e.g. ships), what matters is energy density by volume <u>and not</u> energy density by weight

https://www.rechargenews.com/energy-transition/special-report-why-shipping-pure-hydrogen-around-the-world-might-already-be-dead-in-the-water/2-1-1155434

But NH₃ also has considerable problems:

And the traditional Haber-Bosch process, which is usually powered by fossil fuels, requires 9-11kWh/kg, according to multiple sources. However, powering Haber-Bosch via renewable electricity could cut this to 6.41kWh/kg, say **researchers at the UK's Cranfield University**.

While that might sound like a win for ammonia, LH_2 actually contains a lot more energy per kilogram than ammonia — 33.6kWh/kg versus 5.2kWh/kg. So while conversion to LH_2 requires the equivalent of 36% of the energy that the hydrogen contains, producing ammonia requires more energy than that held by the produced NH_3 .

According to Bunro Shiowaza, a senior associate at the Sumitomo Chemical Company in Japan, writing in the Japanese-language International Environment and

Economy Institute Journal, producing zero-carbon ammonia from green hydrogen (priced at \$3/kg) would cost \$480 per tonne, or \$0.48/kg (*note: ammonia is only 17.65% hydrogen by mass*).

 $\rm LH_2$ based on green hydrogen at the same price would cost \$7.15/kg — almost 15 times higher than green $\rm NH_3.$

Taking all these elements into account, it is clear that ammonia would be far less expensive to transport by sea than liquid hydrogen.

Agora calculates it would be cheaper to produce green hydrogen in the EU than to import renewable H_2 by ship from places such as Chile and Australia, where high solar irradiation and strong winds means hydrogen can be produced extremely cheaply.

However, as the think-tank explains in its recent report, *12 Insights on Hydrogen*, the opposite would be true for hydrogen derivatives such as ammonia, methanol or synthetic fuel.

As the Royal Society policy briefing note points out, ammonia production currently results in about 500 million tonnes of CO_2 being released into the atmosphere each year, about 1.8% of annual global carbon emissions.

But don't we still need to trade pure hydrogen?

Yes, the world will still need a lot of pure hydrogen, probably to decarbonise heavy industry and heavy transport, rather than for use cases such as heating and cars, where electric options will be far cheaper.

And countries such as Germany, Japan and South Korea — as well as the EU — believe that they will not be able to produce enough clean hydrogen locally to meet demand. So international trade in H_2 is very much still needed.

HOW RECHARGE CALCULATED THE COST OF SHIPFULS OF AMMONIA AND LIQUID HYDROGEN

A full 160,000-cubic-metre cryogenic liquid tank (a standard size on LNG vessels where liquefied natural gas needs to be kept at minus 162°C) would contain 109,248 tonnes of liquid ammonia, which, using Shiowaza's costings of \$0.48/kg, would cost \$52.44m to produce.

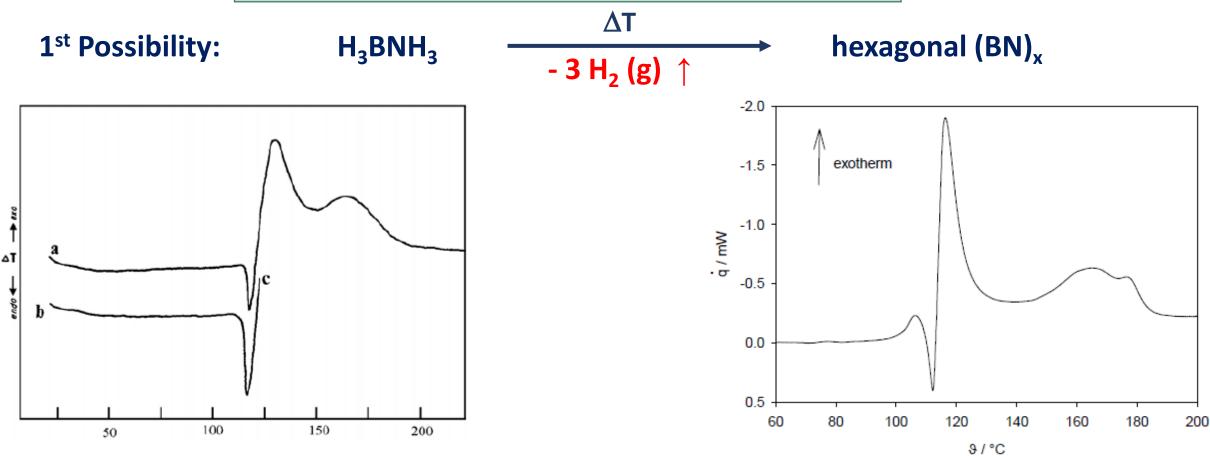
The same tank would only be able to hold 11,376 tonnes of liquid hydrogen, which would cost \$81.34m to produce at a price of 7.15/kg.

The ammonia shipment would therefore contain 596.8GWh of energy, at a cost of \$87.87/MWh, whereas the hydrogen tankful would contain 404.8GWh at a cost of \$200.94/MWh.

https://www.rechargenews.com/energy-transition/special-report-why-shipping-pure-hydrogen-around-the-world-might-already-be-dead-in-the-water/2-1-1155434

Various possibilities have been described in the literature e.g.:

LiBH₄ H₃BNH₃ NH₄CI LiCl Η, +++45% yield NaBH_a can be used instead of LiBH_a NH_4Cl can be replaced by $(NH_4)_2CO_3$ or $(NH_4)_2SO_4$ $LiBH_4 + NH_4Cl \rightarrow [NH_4]^+[BH_4]^- + LiCl$ **Metathesis reaktion** $[NH_4]^+[BH_4]^- \rightarrow H_3N-BH_3 + H_2$ **Proton-Hydride combination** or e.g.: THF 2 NaBH_₄ $(NH_4)_2CO_3$ 2 H₃BNH₃ Na₂CO₃ + 2 H₂ ++


[1] Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 5, 16.
 [2] U. M. Dermirci, Energies, 2020, 13, 3071.

Two (abbreviated) Cycles for the Possible Synthesis and Decomposition of H_3BNH_3 , with the Release of Hydrogen (H_2)

2nd Possibility 1st Possibility H₃BNH₃ H₃BNH₃ + HCI (aq) - H₂ (g) ↑ ΔΤ + AICl₃/HCl - 3 H₂ (g) ↑ $B(OH)_3$ hexagonal (BN)_x + urea or NH₃ under N₂ atmosphere hexagonal (BN),

?

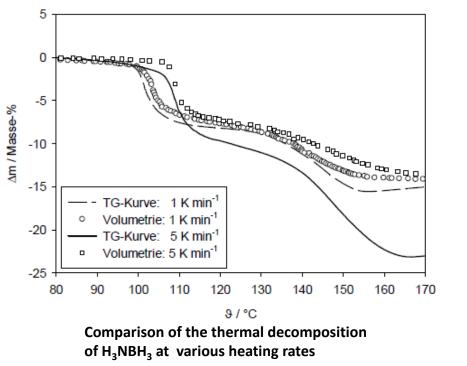
Thermal decomposition of Borazane (DTA) by Hu et al., up to 200°C, with β = 10 K/min

Thermal decomposition of Borazane up to 200°C under N₂, with β = 5 K/min

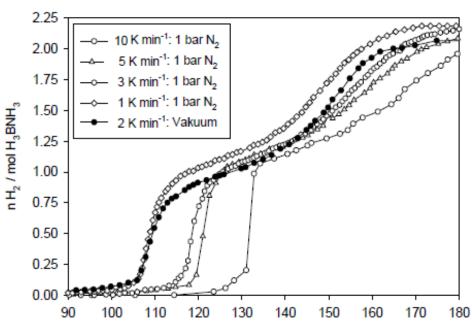
Decomposition processes are accompanied by the release of hydrogen.

Hu et al.: above T = 120°C, mass loss of 31.6%; up to 200°C a total of 35 mass-% lost *Sorokin et al.*: at T = 105°C, mass loss of ca. 6.5%; at 150°C ca. 9.8 mass-%; at 300°C ca. 12.7 mass-% *Sorokin et al.*: All of the bound hydrogen in H_3NBH_3 is released with the formation of boron nitride

Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 73, 21.


Thermal Decomposition of Borazane, H₃BNH₃

Hu


$$H_3BNH_3 \xrightarrow{\Delta T} \frac{1}{\chi} (BNH_4)_{\chi} + H_2 \xrightarrow{\Delta T} \frac{1}{\chi} (BNH_2)_{\chi} + H_2$$

Thermal decomposition occurs through two processes DTA, TG

Thermal decomposition at $20 - 200^{\circ}$ C: Volumetric: Value of n = (2,2 ± 0,2) mol H₂ / pro mol H₃BNH₃ (corresponds to a mass loss of Δ m = 14,2 Masse-%

Difference between the calculated mass loss for H₂ release and the experimentally determined value corresponds to ca. 2 mass-%. This difference is attributed to Additional gaseous decomposition products

9 / °C
Volumetric investigations into the thermal
decomposition of H₃NBH₃ different conditions

Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 73, 21.

IR spectrum of the gaseous decomposition products showed:

At 102.5°C, 1st decomposition stage (slow): Aminoboran H_2BNH_2 as well as H_2 At 150°C, 2nd decomposition stage: Borazin, $B_3N_3H_6$ as well as H_2 Hydrogen release (H₂) in both processes A total of 2.2 \pm 0.2 mol H₂ per mol H₃NBH₃

Compounds which are involved in the decomposition:

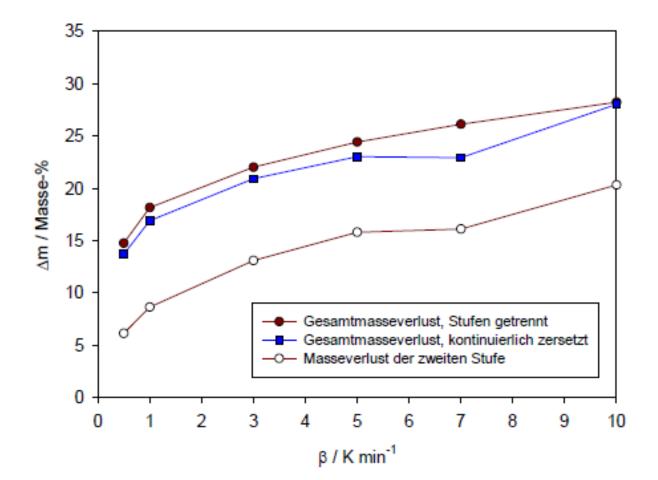
Gas-phase: Hydrogen (H₂), monomeric Aminoborane (H₂NBH₂), Diborane (B₂H₆), Borazine ((HBNH)₃) Solid state: Borazane starting material (H₃BNH₃), polymeric (BNH_x)_z mixture

Steady hydrogen release is observed espite different decomposition conditions (volumetric investigations), but

No solid final product with defined composition – probably a mixture of different polymers

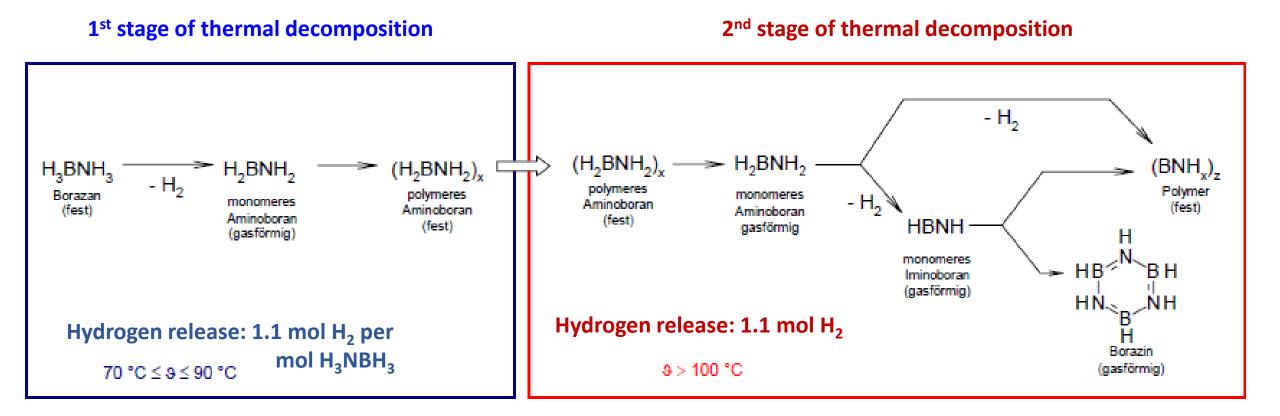
 \Rightarrow Probably the degree of polymerisation of the polymer (BNH_x)_y is dependent on the duration of decomposition since significant differences in the hydrogen content are observed, depending on the conditions used

The quantity of gas released increases with increasing heating rate


Hydrogen release (H₂) in both processes corresponds to a total of 2.2 \pm 0.2 mol H₂ per mol H₃NBH₃ But the total mass loss lies between 14 masse-% to 33 mass-% depending on the conditions used for decomposition

Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003.

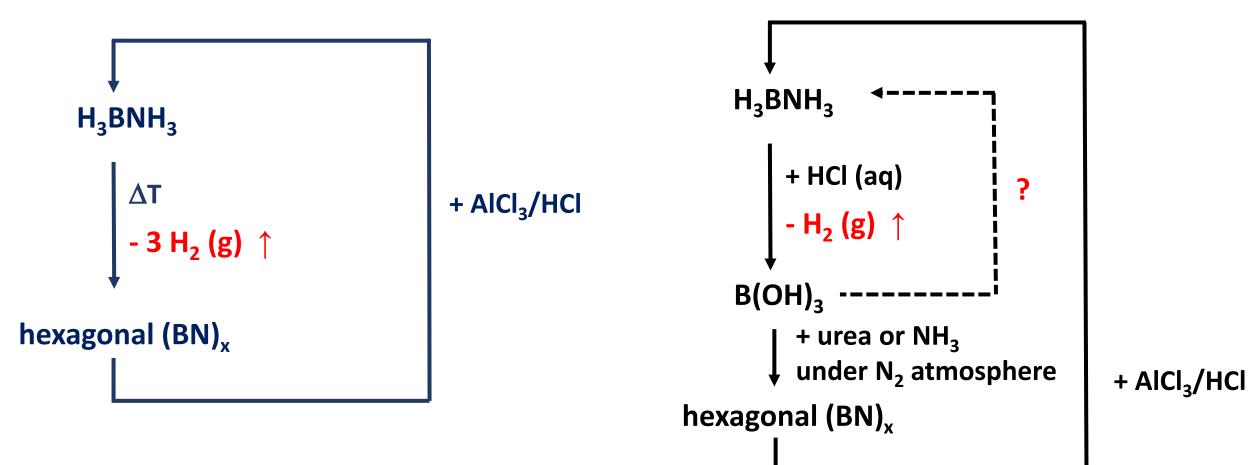
Thermal Decomposition of Borazane, H₃BNH₃


All 3 curves show an increase in the mass loss with increasing heating rate

The almost constant difference between the mass loss of the overall process and that of the 2nd decomposition stage confirm that for the 1st decomposition stage a constant mass loss results

Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003.

Overview of the Thermal Decomposition of Borazane, H₃BNH₃


Hydrogen (H₂) can be released at moderate temperatures in the thermal decomposition of Borazane, H₃BNH₃

Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 89.

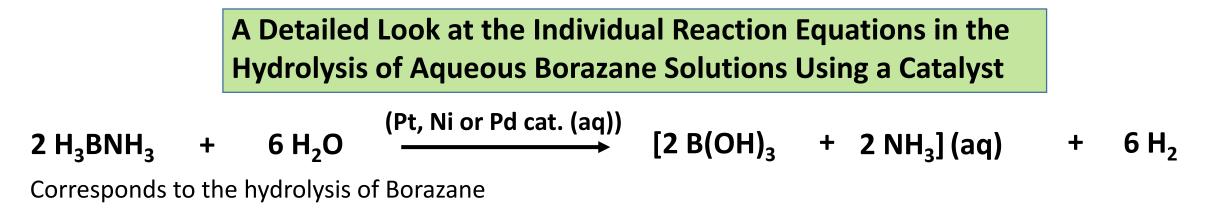
Two (abbreviated) Cycles for the Possible Synthesis and Decomposition of H₃BNH₃, with the Release of Hydrogen (H₂)

1st Possibility

2nd Possibility

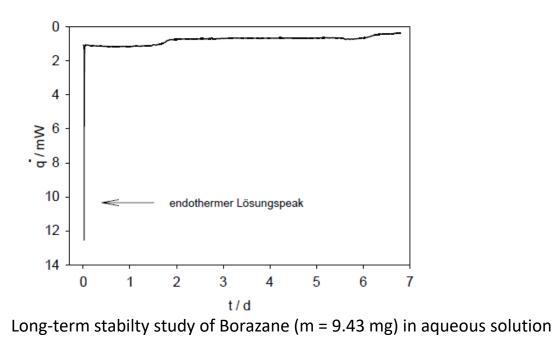
The Release of Hydrogen is Also Possible Through the Hydrolysis of Borazane, H₃BNH₃

Borazane shows considerable stability in water, with a decomposition rate of 0.4% (2,5 % solution, 24 hours at RT)

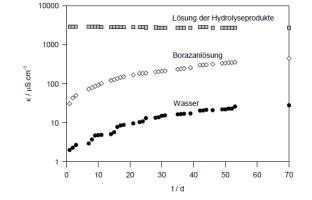

Pure Borazane doesn't decompose in the presence of moisture from the air by releasing hydrogen and ammonia

3.0 00-0 <u>-----</u> 2.5 n H₂ / mol H₃BNH₃ 2.0 Speed of hydrogn relase on hydrolysis with a metal catalyst (Pt/Al₂O₃) or with 0.1 N 1.5 hydrochloric acid 1.0 Hydrolyse mit 0,1 N HCI 0.5 —____ Hydrolyse mit Pt/Al₂O₂ 0.0 50 0 100 150 200 250 Aqueous Borazane solutions decompose: t/min

* Immediately on contact with a metal catalyst with the release of hydrogen (H_2)

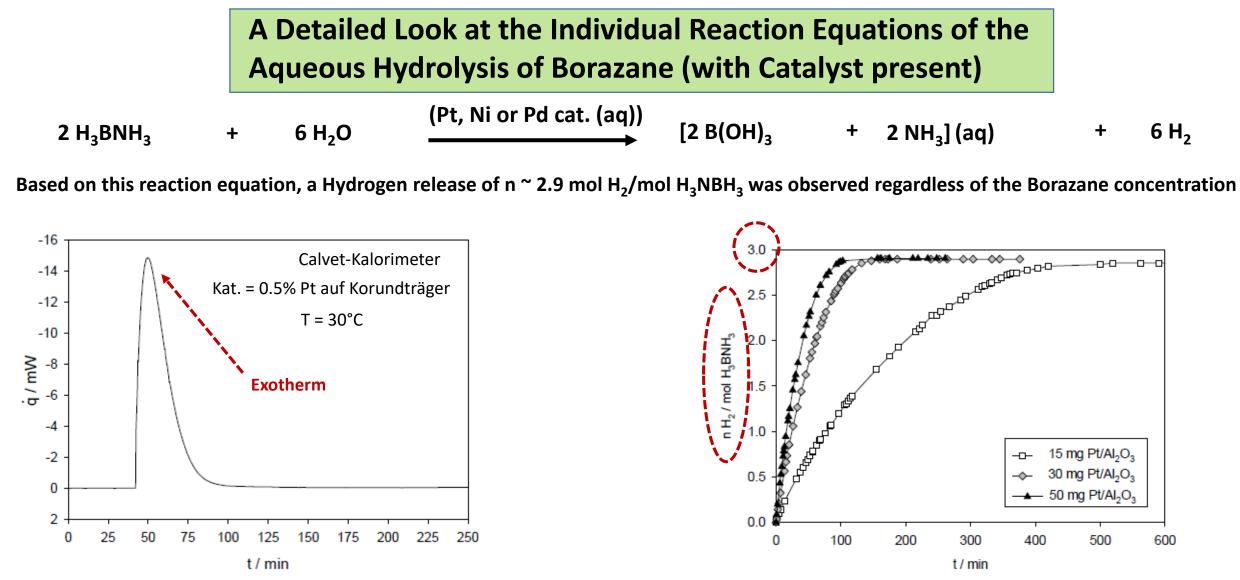

* Immediately on addition of an acid (without a metal catalyst)

Hydrolysis in the presence of an acid proceeds quicker than by addition of a metal catalyst



Borazane can be dissolved in water, and it is relatively stable in aqueous solutions if a catalyst is not present (ca. 0.4% dec. after 24 hours; 15% dec. after 70 days)

Decomposition of Borazane (H₃BNH₃) in aqueous solution occurs only after the addition of a catalyst



Mit Hilfe von Leitfähigkeitsmessungen wurde nach 24 Stunden ein Hydrolysegrad von 0,4 % ermittelt. Nach insgesamt 70 Tagen beträgt der Hydrolysegrad 15 %. Es erfolgten Messungen der Leitfähigkeit von Wasser, einer Borazanlösung ohne Katalysator und einer Borazanlösung mit Katalysator (Abb. 37).

Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 50.

Hydrolysis of dissolved Borazane with Pt/Al_2O_3 catalyst under N_2 (30°C)

Hydrolysis of aq. Borazan at RT possible if Pt catalyst is present Ni catalysata and Pd/Al₂O₃ catalysts less effective Highest speed of hydrolysis with Pt catalyst Volumetric investigation of Borazane hydrolysis with different quantities of catalyst

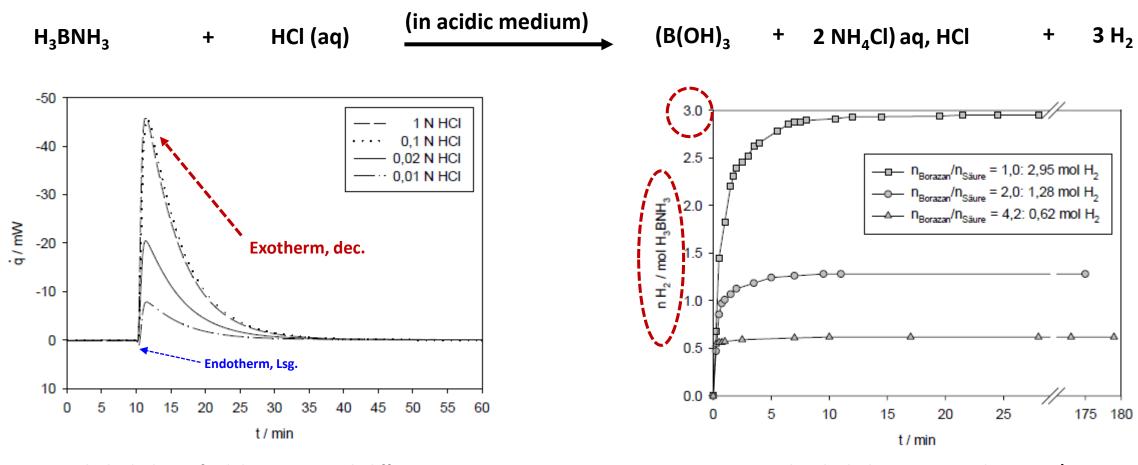
Hydrolysis requires at least 3 mol H₂O per mol Borazane Duration of hydrolysis depends on quantity of catalyst present Duration of hydrolysis independent of the concentration of the Borazane solution

Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 51.

Thermodynamics of the Aqueous Hydrolysis of H₃BNH₃ in the Presence of a Catalyst

 $H_3BNH_3 + 3H_2O \longrightarrow B(OH)_3 + NH_3 + 3H_2$

Enthalpy of Hydrolysis for H₃BNH₃/cat.:


 $\Delta_{R}H_{H3BNH3/Kat} = \Delta_{R}H_{3} + \Delta_{L}H_{1} - \Delta_{L}H_{2} - \Delta_{L}H_{3} - \Delta_{R}H_{4}$ $\Delta_{R}H_{H3BNH3/Kat} = -(129 \pm 8) \text{ kJ mol}^{-1}$

Standard enthalpy of formation for H₃BNH₃/cat.:

 $\Delta_{\rm B}H_{\rm H3BNH3/Kat.} = \Delta_{\rm B}H_{\rm H3BO3} + \Delta_{\rm B}H_{\rm NH3} - 3 \Delta_{\rm B}H_{\rm H2O} - \Delta_{\rm R}H_{\rm H3BNH3/Kat.}$ $\Delta_{\rm B}H_{\rm H3BNH3/Kat.} = -(153 \pm 8) \text{ kJ mol}^{-1}$

Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 63.

Hydrolysis of H₃BNH₃ in Acidic Media

Complete hydrolysis occurs with n_{Borazane}/n_{HCI} = 1 i.e. 2.95 mol Hydrogen are formed

Acidic hydrolysis of solid Borazane with different concentrations of hydrochloric acid under N₂, at 30°C

Hydrolysis of aq. Borazane at RT possible if Pt catalyst is present Ni catalysts and Pd/Al₂O₃ catalysts less effective Highest speed of hydrolysis with Pt catalyst

Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 51.

A Comparison of the Aqueous Hydrolysis of Borazane, H₃BNH₃ in the Presence of a Catalyst or in Acidic Media

Aqueous hydrolysis with a catalyst:

- * Low speed of hydrolysis in comparison with acidic hydrolysis
- * Release of hydrogen can be controlled by the addition/removal of the catalyst

$$H_{3}N BH_{3} + HCI \longrightarrow \begin{bmatrix} H_{3}N \\ BH_{3} \end{bmatrix}^{+} \longrightarrow H_{3}NH^{*} + CI^{*} + BH_{3} (solv) \\ \downarrow H_{2}O \\ H_{3}BO_{3} + H_{2} \end{bmatrix} + HCI \longrightarrow \begin{bmatrix} H_{3}N \\ BH_{3} + HCI \\ H_{3}N BH_{3} + HCI$$

 $H_3BO_3 + H_2 + NH_3$

Aqueous acid Hydrolysis :

- * Higher speed in comparison with the hydrolysis involving a catalyst
- * Complete hydrolysis only if at least 1 Borazan:1 HCl ratio
- * The release of hydrogen can be controlled by the acid concentration. It is unknown whether an incomplete hydrolysis can be re-started to release hydrogen again on addition of acid

Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003.

Comparison of the Thermal Decomposition as well as of the Hydrolysis of Borazane, H₃BNH₃

Which method is more promising – thermal decomposition or hydrolysis of Borazane?

* Amount of hydrogen released:

Thermal decomposition:	maximum 2.2 mol H ₂ /1 mol Borazane released (up to 200°C), corresponds to a mass-based	
	energy density of 14 mass-% hydrogen	
Hydrolysis:	2.9 mol H ₂ /1 mol Borazane released, 5 mass-% higher than in the thermal decomposition	

* Technical Aspects:

Thermal decomposition.	Speed is aply acceptable at temperatures above 20°C, significantly lower temperature in	
Thermal decomposition:	Speed is only acceptable at temperatures above 80°C, significantly lower temperature in	
	comparison with MgH ₂ or MgNiH ₄ (H ₂ release begins above 280°C)	
Hydrolysis:	occurs at RT, no elevated temperature necessary	
Thermal decomposition:	Hydrogen release could only be separated into two steps, each with the release of 1.1 mol H_2	
Hydrolysis:	In principle, the release of hydrogen could be stopped by removal of the catalyst, introduces the	
	possibility of hydrogen release in portions	
Thermal decomposition:	The speed of hydrogen release is determined by the heating rate, the heating rate is also	
	responsible for the composition of the product	
Hydrolysis:	The speed of hydrogen release can be controlled by controlling the presence of the catalyst	
Hydrolysis:	Possible applications of the aqueous Borazane solution for use direct in the combustion cell	
	with the hyrogen release occurring directl at the Pt electrode	

Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 99.

Overview of the two Decomposition Processes of Borazane, H₃BNH₃

Thermal Decomposition of Solid Borazane

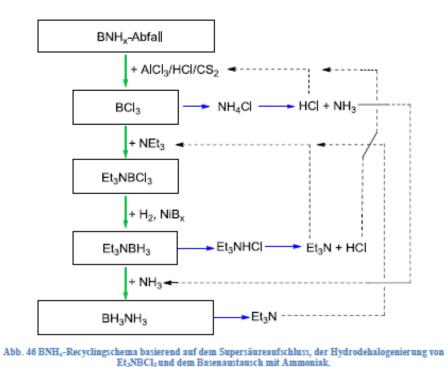
- * Two exothermic processes (in region 25 200°C)
- * 1.1 mol H₂ released per process
- * Total of 2.2 mol H_2 released
- * Process strongly influenced by the heating rate (at β > 0.5 K/min decomposition processes overlap)

* 1st stage of decomposition:

 \Rightarrow formation of H₂NBH₂ followed by polymerisation to form (BNH_x)_z-Polymer.

* 2nd stage of decomposition:

- \Rightarrow Polymeric (H₂BNH₂)_x converted to H-poor, (BNH_x)_z solid
- \Rightarrow Decomposition reaction is strongly influenced by the β
- \Rightarrow At elevated β , the formation of Borazin (HBNH)₃ and monomeric H₂BNH₂ increases
- ⇒ Hydrogen generation can be optimized in which the formation of additional gaseous products is minimised

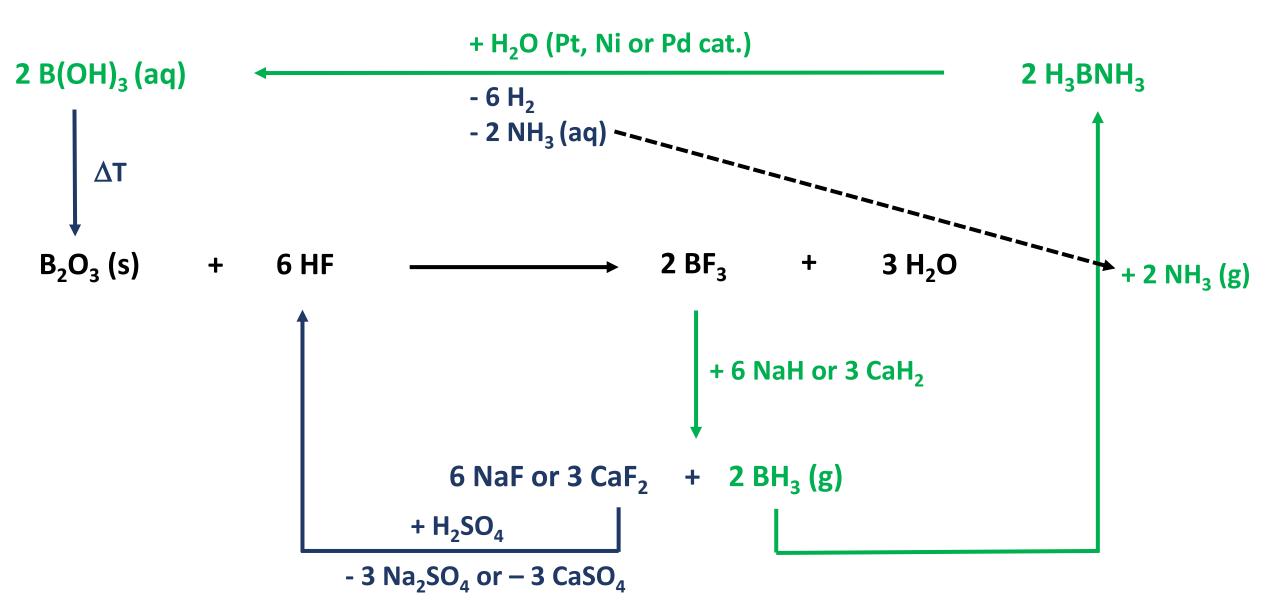

Hydrolysis of Aqueous Borazane Solutions

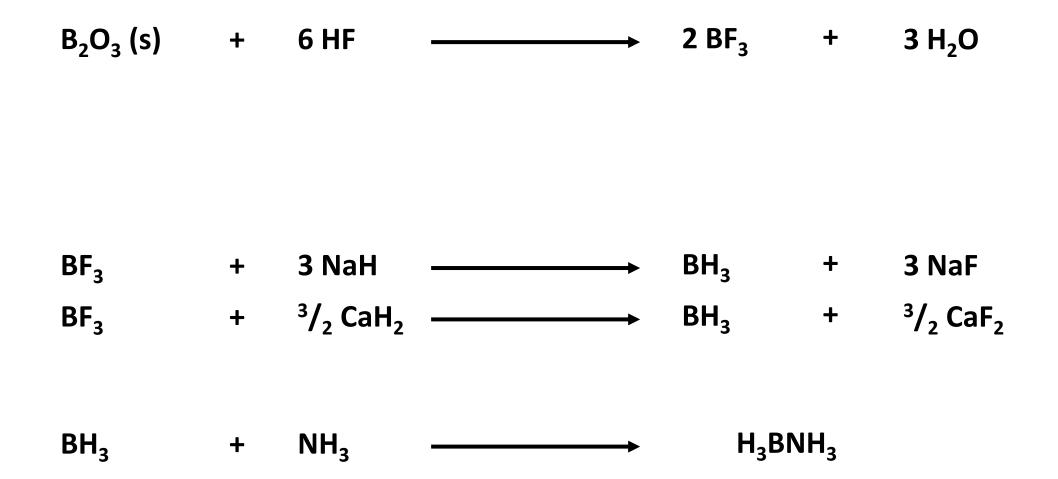
- * Borazane dissolved in water shows considerable stability
- * Hydrolysis occurs only after addition of a catalyst
- * Total of 2.95 mol H₂ released
- * Acid hydrolysis without catalyst also possible
- * Hydrolysis occurs by $\rm H_2$ release forming B(OH)_3 und $\rm NH_3$
- * 19 mass-% released H₂, higher than in the thermal decomposition
- * Hydrolysis occurs at RT
- * Controllable with the amount of catalyst used
- * Hydrolysis can be stopped by removal of the catalyst

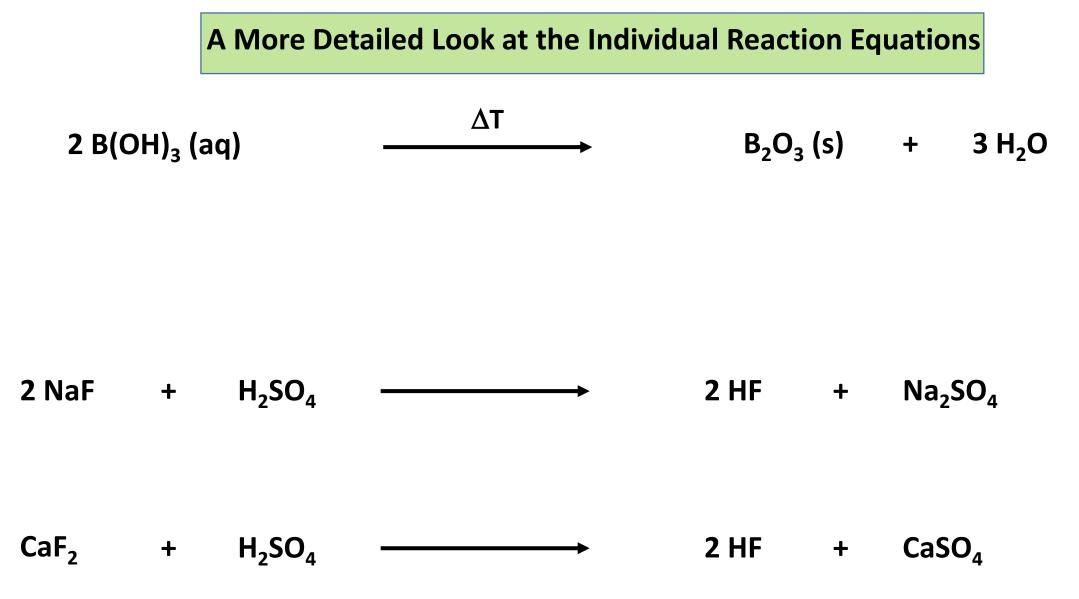
Physikalisch-chemische Untersuchungen zur Wasserstoffabgabe von BNH-Verbindungen, J. Baumann, Doktorarbeit, TUB Freiberg, 2003, s. 100.

How can Borazane be Regenerated?

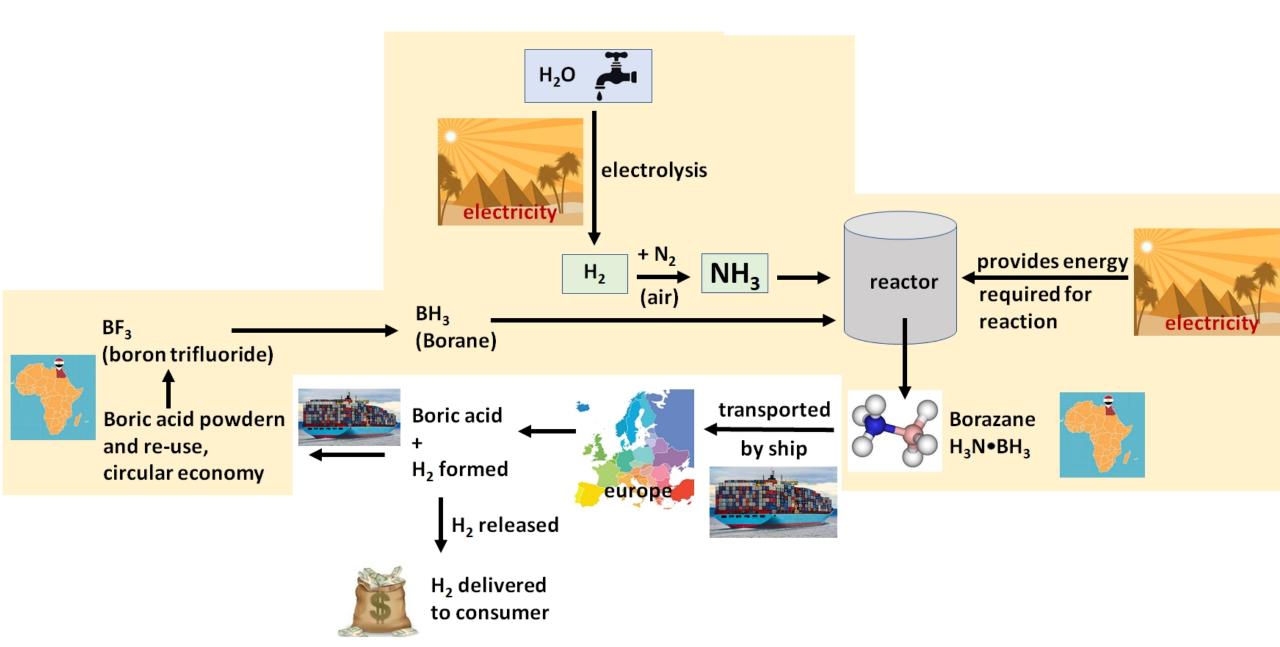
3.2 BNH_x-Abfall Recycling und die Wiedergewinnung von BH₃NH₃ In den folgenden Abschnitten dieser Arbeit werden vor dem Hintergrund der drei wichtigen Verfahrensschritte des Recyclingschemas (BNH_x-Aufschluss, Hydrodehalogenierung und Basenaustausch) (Abb. 46) die wichtigsten Ergebnisse präsentiert. Als bedeutendster Teilbereich der folgenden Ergebnisse soll die heterogen katalysierte Hydrodehalogenierung von Et₃NBX₃-Addukten unter der Anwendung des bisher aufwendig charakterisierten amorphen Nickelborids im Vordergrund stehen.


Abb. 88 Fließschema des BNH_X-Abfallrecyclings in Kombination mit der Chloralkalielektrolyse.


Heterogen katalysierte Hydrodehalogenierung von Borhalogeniden im Rahmen eines in sich geschlossenen BNH_x-Recyclingkonzepts, C. Reller, Doktorarbeit, TUB Freiberg, 2014, s. 102, 182.

Possible Complete Cycle for the Synthesis and Decomposition of H_3BNH_3 , with the Release of Hydrogen (H_2)


A More Detailed Look at the Individual Reaction Equations

Already well-investigated and well-known industrial process for the production of HF

The Production of "Green" Hydrogen, Ammonia and Borazane in Egypt and Transport to Europe

